The most vigorous exercise

C. S. Peirce, §10. Kinds of Reasoning, in Chapter 2, Lessons from the History of Science, Principles of Philosophy:

The methods of reasoning of science have been studied in various ways
and with results which disagree in important particulars. The followers of Laplace treat the subject from the point of view of the theory of probabilities. After corrections due to Boole and others, that method yields substantially the results stated above. Whewell described the reasoning just as it appeared to a man deeply conversant with several branches of science as only a genuine researcher can know them, and adding to that knowledge a full acquaintance with the history of science. These results, as might be expected, are of the highest value, although there are important distinctions and reasons which he overlooked. John Stuart Mill endeavored to explain the reasonings of science by the nominalistic metaphysics of his father. The superficial perspicuity of that kind of metaphysics rendered his logic extremely popular with those who think, but do not think profoundly; who know something of science, but more from the outside than the inside, and who for one reason or another delight in the simplest theories even if they fail to cover the facts.

Mill denies that there was any reasoning in Kepler’s procedure. He says it is merely a description of the facts. He seems to imagine that Kepler had all the places of Mars in space given him by Tycho’s observations; and that all he did was to generalize and so obtain a general expression for them. Even had that been all, it would certainly have been inference. Had Mill had even so much practical acquaintance with astronomy as to have practised discussions of the motions of double stars, he would have seen that. But so to characterize Kepler’s work is to betray total ignorance of it. Mill certainly never read the De Motu [Motibus] Stellae Martis, which is not easy reading. The reason it is not easy is that it calls for the most vigorous exercise of all the powers of reasoning from beginning to end.